Climate risk

The risk equation shows that climate risk is a product of hazard, exposure, and climate change vulnerability (where 'x' represents interaction between the components).[1]

Climate risk is the potential for problems for societies or ecosystems from the impacts of climate change.[2] The assessment of climate risk is based on formal analysis of the consequences, likelihoods and responses to these impacts. Societal constraints can also shape adaptation options.[3][4] There are different values and preferences around risk, resulting in differences of risk perception.[5]: 149 

Common approaches to risk assessment and risk management strategies are based on analysing hazards. This can also be applied to climate risk although there are distinct differences: The climate system is no longer staying within a stationary range of extremes.[6] Hence, climate change impacts are anticipated to increase for the coming decades.[7] There are also substantial differences in regional climate projections. These two aspects make it complicated to understand current and future climate risk around the world. Scientists use various climate change scenarios when they carry out climate risk analysis.[8]

The interaction of three risk factors define the degree of climate risk. They are hazards, vulnerability and exposure.[9] : 2417  There are various approaches to climate risk management. One example is climate risk insurance. This is a type of insurance designed to mitigate the financial and other risk associated with climate change, especially phenomena like extreme weather.[10][11]

  1. ^ Gill, J.C., Duncan, M., Ciurean, R., Smale, L., Stuparu, D., Schlumberger, J, de Ruiter M., Tiggeloven, T., Torresan, S., Gottardo, S., Mysiak, J., Harris, R., Petrescu, E. C., Girard, T., Khazai, B., Claassen, J., Dai, R., Champion, A., Daloz, A. S., … Ward, P. 2022. MYRIAD-EU D1.2 Handbook of Multi-hazard, Multi-Risk Definitions and Concepts. H2020 MYRIAD-EU Project, grant agreement number 101003276, pp 75.
  2. ^ IPCC, 2022: Annex II: Glossary [Möller, V., R. van Diemen, J.B.R. Matthews, C. Méndez, S. Semenov, J.S. Fuglestvedt, A. Reisinger (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2897–2930, doi:10.1017/9781009325844.029
  3. ^ Adger WN, Brown I, Surminski S (June 2018). "Advances in risk assessment for climate change adaptation policy". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 376 (2121): 20180106. Bibcode:2018RSPTA.37680106A. doi:10.1098/rsta.2018.0106. PMC 5938640. PMID 29712800.
  4. ^ Eckstein D, Hutfils ML, Winges M (December 2018). Global Climate Risk Index 2019; Who Suffers Most From Extreme Weather Events? Weather-related Loss Events in 2017 and 1998 to 2017 (PDF) (14th ed.). Bonn: Germanwatch e.V. p. 35. ISBN 978-3-943704-70-9. Retrieved 7 December 2019.
  5. ^ Ara Begum, R., R. Lempert, E. Ali, T.A. Benjaminsen, T. Bernauer, W. Cramer, X. Cui, K. Mach, G. Nagy, N.C. Stenseth, R. Sukumar, and P. Wester, 2022: Chapter 1: Point of Departure and Key Concepts. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 121–196, doi:10.1017/9781009325844.003.
  6. ^ IPCC (2018). Global Warming of 1.5°C. An IPCC Special Report. Summary for Policymakers (PDF). Intergovernmental Panel on Climate Change. p. 5.
  7. ^ Chen X (2011-09-01). "Why do people misunderstand climate change? Heuristics, mental models and ontological assumptions". Climatic Change. 108 (1): 31–46. Bibcode:2011ClCh..108...31C. doi:10.1007/s10584-010-0013-5. S2CID 154308472.
  8. ^ Whetton P, Hennessy K, Clarke J, McInnes K, Kent D (2012-12-01). "Use of Representative Climate Futures in impact and adaptation assessment". Climatic Change. 115 (3): 433–442. Bibcode:2012ClCh..115..433W. doi:10.1007/s10584-012-0471-z. S2CID 153833090.
  9. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  10. ^ "7 things you need to know about climate risk insurance - Institute for Environment and Human Security". ehs.unu.edu. Retrieved 2020-11-08.
  11. ^ Kousky, Carolyn (5 October 2019). "The Role of Natural Disaster Insurance in Recovery and Risk Reduction". Annual Review of Resource Economics. 11 (1): 399–418. doi:10.1146/annurev-resource-100518-094028. ISSN 1941-1340. S2CID 159178389.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search